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to be 5.0 and the gas to be ideal and monatomic. A normal
shock wave forms ahead of the piston, the gas temperatureBefore a hybrid scheme can be developed combining the direct

simulation Monte Carlo (DSMC) method and a Navier–Stokes (NS) (dashed curve) rises behind the shock and then falls as a
representation, one must have access to compatible kinetic-split result of the cold piston surface (located at x/L 5 1).
fluxes from the NS portion of the hybrid scheme. The kinetic theory Because of the nearly constant pressure between the shock
basis is given for the development of the required fluxes from the

and the piston, the density (solid curve) rises in the thermalChapman–Enskog velocity distribution function for a simple gas;
layer in an inverse ratio to the temperature. In this case,and these are then extended to a polyatomic gas by use of the

Eucken approximation. The derived fluxes are then used to imple- the peak density is 8.2 times the density behind the shock
ment boundary conditions at solid surfaces that are based on con- wave. Although the DSMC method must be used to obtain
cepts associated with kinetic theory and the DSMC method. This the proper shock wave profile, as is well known, it is clear
approach is shown to lead to temperature slip and velocity slip as

that the much higher density in the thermal layer woulda natural outcome of the new formulation, a requirement for use
lead to a greatly increased DSMC simulation cost in thatin the near-continuum regime where DSMC and NS must be joined.

Several different flows, for which solid boundaries are not present, region, prompting consideration of a hybrid scheme, where
are computed using the derived fluxes, together with a second- the DSMC method would be used to model the outer flow
order finite-volume scheme, and the results are shown to agree and the NS equations to model the thermal layer. This
well with several established numerical schemes for the NS

concept is schematically depicted in Fig. 2.equations. Q 1997 Academic Press

Because the DSMC method is based on kinetic theory,
the DSMC fluxes to be matched at an interface of a hybrid
solution are physical quantities; the fluxes emanating fromI. INTRODUCTION
the DSMC region F 1 are one-sided kinetic fluxes and the

A question that frequently arises when attempting to frame of reference is an inertial frame, as indicated in Fig.
model plume flows generated by thrusters operating in the 2. The flux of mass (momentum or energy) from the DSMC
vacuum of space is: how to interface a numerical solution side is gotten directly from the particles that cross the
of the Navier–Stokes (NS) equations, which is most appro- interface in one time step. In order to develop an effective
priate for the high-density gas flow found inside a nozzle, hybrid scheme, one must therefore address the following
with the direct simulation Monte Carlos (DSMC) method issues.
[2], which is most appropriate for modeling the very

• The same definitions should be used for the split fluxeslow-density gas flow found in the outer plume? A similar
when matching at an interface, preferably the kinetic the-question arises for the case of a blunt body in a rarefied
ory definition of one-sided kinetic fluxes (DSMC) in anhigh-enthalpy flow, where a numerical solution of the NS
inertial frame of reference.equations is often the most appropriate for handling the

• As indicated by Figs. 1 and 2, considerable nonequilib-high-density gas layer found near the relatively cold body
rium may exist at an interface in the form of heat flux orsurface, while the DSMC method is the most appropriate
shearing stress when considering a boundary-layer flow.for the rarefied outer flow.
Therefore, the numerical scheme chosen to interface withBoth questions can best be understood by considering
DSMC must solve the NS equations; because the DSMCthe much simpler case of an impulsively started piston in
method possesses characteristics of a time-dependent fi-a stationary gas, where the piston travels in a direction
nite-volume scheme, compatibility suggests the use of thenormal to its surface, the piston Mach number is assumed
same scheme for the NS portion.high, and the piston temperature and gas temperature are

initially equal. A NS solution for a representative case is • Because matching can only be carried out in the near-
continuum regime, where both DSMC and NS are valid,shown in Fig. 1, where the piston Mach number is taken
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can be found in a book by Patterson [13] and in papers
by Broadwell [4], Bird [2], Pullin [15], Prendergast and Xu
[14], Mandal and Deshpande [12], and Gooch [8]. Because
we seek a formulation based on the NS equations and
because much of the previous work focused on the Euler
equations, it is appropriate to first turn to general results
found in work on kinetic theory, in particular, the well-
known system of moment equations formed from the
Boltzmann equation. This approach treats the equilibrium
and nonequilibrium components of the fluxes on the same
footing, and the derivation itself provides the definitions
along with the justification for their use. An alternative is
the separate introduction of the nonequilibrium terms at
the macroscopic level, as discussed by Macrossan and Oli-
ver [10] and by Mallett et al. [11], but this approach would
not directly satisfy the first and fifth conditions in the above
list of issues.

II. MOMENTS OF THE BOLTZMANN EQUATION

Many of the equations and concepts to be presented inFIG. 1. Temperature (T/T1, – – –) and density (r/r1, ———) ahead
of an impulsively started piston in a stationary gas (state 1), where piston this section can be found in standard work on kinetic the-
Mach number 5 5.0, c 5 5/3, and piston temperature is held fixed. The ory, such as Chapman and Cowling [5], Grad [9], Patterson
piston is located at x/L 5 1. [13], Vincenti and Kruger [20], Woods [22], and Bird [3].

We start with the case of an ideal monatomic gas in the
absence of external forces and assume the gas is sufficiently

it is clear that velocity slip and/or temperature slip would dilute for binary collisions to dominate. For this case the
be present at the body surface, i.e., the piston surface in Boltzmann equation reads
Fig. 2. Therefore, the NS solution must account for slip;
the no-slip boundary condition cannot be used. ­(nf )

­t
1 ck

­(nf )
­xk

5 F­(nf )
­t G

coll
, (1)

• The numerical scheme handling the NS portion must
be shown to agree with existing numerical methods for the

where n is the number density, f is the velocity distributionNS equations before a hybrid scheme is constructed.
function, ck the molecular velocity in an inertial frame, the

• Conversion of the NS values for the one-sided kinetic repeated index k denotes a sum, and the right-hand side
fluxes at an interface into a corresponding collection of represents the collision integral. The moment equations
particles for insertion into the DSMC simulation must be are obtained by multiplying the Boltzmann equation by
carried out in a physically compatible and computationally any function of molecular velocity Q(ci) and integrating
cost-effective way. over velocity space. These equations are represented by

• Conditions must be identified that define a suitable
location for placement of an interface. For example, for ­

­t
(n , Q .) 1

­

­xk
(n , ckQ .) 5 D[Q]. (2)

moderate nonequilibrium, it is generally found that good
results are obtained for DSMC simulations if the local

The two operators appearing in (2) are defined bycell Knudsen number (local mean free path length to cell
dimension) is greater than unity. To use this criterion,
questions of compatibility with the NS equations would
have to be explored.

• Both the NS scheme selected and the resultant hybrid
scheme created must be compared with different DSMC
solutions for complete verification.

The objective of the present study is to address and discuss
the first four issues listed above; the remaining three will FIG. 2. A schematic representation of a hybrid scheme joining the
be covered in follow-on reports. direct simulation Monte Carlo (DSMC) method and a Navier–Stokes

(NS) numerical method.Much of the groundwork for the present investigation
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­xk
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coll

dc1dc2dc3 . (4)

1
­

­xk
Fruk Se 1

u2

2 D1 Pkiui 1 qkG5 0. (12c)When the arbitrary function of molecular velocity Q(ci)
is chosen to be one of the five collisional invariants
QINV 5 mh1, ci , c2/2j, where m is the molecular mass and

If the gas is not simply a monatomic gas but has internalc2 represents the square of the velocity magnitude, then
structure, then the above procedure must be modified.the corresponding moment of the collision integral is iden-
Because the general problem includes the question of whattically zero, i.e., D[QINV] 5 0. This is a general result that
equation replaces (1), the problem is rather difficult andholds for any distribution function f and for any molecular
it becomes necessary to make use of a suitable approxima-interaction law. This selection leads to the conservation
tion. One simplistic approach is to assume that all internallaws for gas dynamics, which can be written in the form
molecular energy modes are in equilibrium, both internally
and with the translational degrees of freedom. Thus, the
additional internal energy eint can be expressed in terms of­

­t
(n , Q INV .) 1

­

­xk
(n , ckQ INV.) 5 0, (5)

the translational temperature T by the equilibrium relation

or, when using each of the collisional invariants in turn,
eint 5

1
2 S5 2 3c

c 2 1 D RT, (13)one obtains the set

where R is the gas constant and where an accounting for­

­t
(r) 1

­

­xk
(r kckl) 5 0 (6a)

the additional internal energy is introduced through the
ratio of specific heats c and for which eint 5 0 in the case
of a monatomic gas.

­

­t
(r , ci .) 1

­

­xk
(r kckcil) 5 0 (6b)

To properly account for the amount of energy that is
carried by a particle with internal structure, the energy­

­t
(r , c2/2 .) 1

­

­xk
(r , ckc2/2 .) 5 0, (6c) mc2/2 must be replaced by (mc2/2 1 «), where « is the

additional internal energy per particle, and therefore, the
quantities of interest becomewhere r 5 mn is the mass density.

Introduction of the thermal velocity components Ci 5
Q INV 5 hm, mci , (mc2/2 1 «)j. (14)(ci 2 ui), where ui 5 , ci . is the mean or fluid velocity,

allows one to introduce the central moments defined by
Assuming Eq. (1) continues to hold for the extended distri-
bution function f(ci , «) and provided the right-hand side

Pij 5 r , CiCj . (7) is interpreted in a suitable way, then an additional integral
over « is formally required in applying both (3) and (4).p 5 Pkk/3 (8)
It is reasonable to argue, however, that the quantities in

tij 5 2Pij 1 pdij (9) (14) must continue to be conserved in a collision, and
consequently, (4) again evaluates to zero; thus, (5) re-e 5 , C2/2 . (10)
mains unchanged.

qi 5 r , Ci C2/2 ., (11) In evaluating the left-hand side of (5) for the five differ-
ent quantities in (14), identical results to those obtained
for the monatomic gas will be found for all quantities thatwhere Pij is the pressure tensor or stress tensor, p is the

pressure, tij is the viscous stress tensor, e is the internal contain polynomials in ci alone. This follows from the fact
that integration over the « variable can be taken first andenergy (translational) for a monatomic gas, and qi is the

heat flux vector for a monatomic gas. The conservation independently from the ci integration. Therefore, Eqs. (6a)
and (6b) and, consequently, (12a) and (12b), are fully re-laws for gas dynamics can then be written in the familiar

form covered. The same conclusion also applies to the first term
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in the quantity (mc2/2 1 «) and, therefore, (6c) is re- by Mallett et al. [11] is also recovered by this step. If one
chooses a Chapman–Enskog (CE) distribution f CE, thenplaced by
the set becomes the Navier–Stokes equations, because
stress and heat flux are then given by the corresponding­

­t
(r , c2/2 . 1 n , « .)

(15)
Chapman–Enskog expressions. This is the path that we
will follow in developing a KFVS scheme for the NS equa-
tions. One may also choose a discrete representation for1

­

­xk
(r , ckc2/2 . 1 n , ck« .) 5 0.

f and the equations still hold. This is an alternate interpreta-
tion of the concept that lies behind the state vector splitting

Substitution of the central moments (7)–(11) into (15) scheme for the Navier–Stokes equations introduced by
reproduces all of the previous algebra for the monatomic Gooch [8]. The most important point is that one is free
gas and leads to to choose any translational velocity distribution function

whatsoever in using Eqs. (5), (6), or (12), and in so doing,
the set becomes closed, as long as f is fully specified. Other-­

­t Fr Se 1
u2

2 D1 reintG1
­

­xk
Fruk Se 1

u2

2 D
(16)

wise, if f remains general, then one is faced with the well-
known closure problem, when using a moment method,
because tij and qi are then unknown quantities in the equa-

1 Pkiui 1 qk 1 (n , Ck« . 1 rukeint)G5 0, tions. It is useful to emphasize the fact that the conservation
equations as displayed in (12) are not the NS equations
until one introduces f CE.where the definition , « . 5 meint has been used. There-

Each of the five separate moment equations representedfore (12c) also continues to hold, provided we replace
by either (5), (6), or (12) can be expressed by the single(10) by
form

e 5 (, C2/2 . 1 eint) (17)
­U
­t

1
­Fk

­xk
5 0. (19)

and the definition of the heat flux vector (11) by

The complete specification of Fi in three dimensions, as
qi 5 r , Ci C2/2 . 1 n , Ci« . . (18) defined by (19), requires the evaluation of 15 quantities.

But the task is made considerably simpler, if one considers
We therefore conclude that the complete collection of Eqs. a finite volume scheme, uses Gauss’ divergence theorem,
(5), (6), and (12) can be used as they stand, provided and writes Eq. (19) as
definitions (17) and (18) are employed when the gas pos-
sesses internal structure and a state of equilibrium exists

­

­t
E

V
U dV 1 E

S
Fn dS 5 0, (20)between the internal modes and the translational degrees

of freedom (see [20, p. 326]).
Because the conservation equations (12) can be devel-

where S encloses the volume V and Fn is the projection ofoped for any general fluid through use of phenomenologi-
Fi onto the unit outward pointing normal for the surfacecal arguments alone, the set is actually more general than
element dS. If V is taken to be a rectangular volume, thenthe kinetic theory derivation would indicate, i.e., they are
one only needs to evaluate five quantities for each planaralso the conservation equations for fluid dynamics. How-
surface, a conceptually simpler task, provided Fn can beever, we are only interested in treating an ideal gas flow,
evaluated directly. Using the notation of (5), we then haveand the use of the kinetic theory approach is necessary

because it shows that the set is valid for any degree of
U 5 n , QINV . (21)translational nonequilibrium, that is, for any translational

velocity distribution function one cares to consider. If one
andchooses the equilibrium distribution, namely the Maxwel-

lian distribution f Max, then the set becomes the Euler equa-
Fn 5 n , cnQINV . , (22)tions, because viscous stress and heat flux are identically

zero for f Max. This step allows one, in effect, to reproduce
the special case considered by Pullin [15] in his equilibrium where U is the state vector, Fn is the total flux vector, and

cn is the component of the molecular velocity normal to theflux method (EFM), as well as the work by Mandal and
Deshpande [12] on kinetic flux-vector splitting (KFVS) for planar surface. Equation (22) clearly represents a physical

concept. This can be seen from the fact that Q is a scalarthe Euler equations. The inviscid limit of the recent work
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quantity which is carried across the fixed surface by cn , F 1
zero 5 Ey

2y
Ey

2y
Ey

2un

f dCndCt1dCt2 (27)
thus creating a physical flux in that quantity.

The five fluxes defined by (22) are total fluxes, not the
F 1

mass 5 r Ey

2y
Ey

2y
Ey

2un

(Cn 1 un) f dCndCt1dCt2 (28)one-sided fluxes depicted in Fig. 2. In addition, these gen-
eral expressions contain both the inviscid fluxes as well as
the nonequilibrium components due to viscous stress and F 1

n2mom 5 r Ey

2y
Ey

2y
Ey

2un

(Cn 1 un)2 f dCndCt1dCt2 (29)
heat flux, as can be seen from the corresponding terms in
(12). Because many quantities evaluate to zero in arriving

F 1
t12mom 5 r Ey

2y
Ey

2y
Ey

2un

(Cn 1 un)(Ct1 1 ut1)at the set (12) and these cannot be recovered in a simple
way, one must use the more primitive set (5), or (6), in

f dCndCt1dCt2 (30)developing the algebra for the one-sided, kinetic-split
fluxes.

F 1
tr2energy 5 r Ey

2y
Ey

2y
Ey

2un

(Cn 1 un)

III. KINETIC SPLIT FLUXES
[(Cn 1 un)2 1 (Ct1 1 ut1)2 1 (Ct2 1 ut2)2]

As seen in Fig. 2, we are interested in expressions for 1
2

f dCndCt1dCt2 (31)the one-sided fluxes based on a fixed interface and an
inertial frame of reference. On this basis and on consider-
ing the x1 direction as positive, we can split the integration F 1

int2energy 5 n Ey

0
Ey

2y
Ey

2y
Ey

2un

(Cn 1 un)
in c1 as

« f dCndCt1dCt2 d« 5 Dq1
Eucken 1 rune1

int (32)Ey

2y
Ey

2y
Ey

2y
h....j dc1dc2dc3

F 1
energy 5 F 1

tr2energy 1 F 1
int2energy . (33)

5 Ey

2y
Ey

2y
SE0

2y
1 Ey

0
D h....j dc1dc2dc3 (23) Integration over the « variable is not shown in Eqs. (27)–

(31) because it can be carried out as an independent opera-
tion and done first. However, it does appear explicitly in

5 Ey

2y
Ey

2y
SE2u1

2y
1 Ey

2u1
D h...j dC1dC2dC3 , (32), and this equation must be included when a gas has

internal structure. The role played by (32) can be seen
from the fact that the Cn« term in the integrand is thewhere the second expression introduces the thermal veloc-
source of the second term in (18), while the un« term isity components Ci . The concept of a kinetic split flux has
the source of the second term in (17). The difficulty ina long history in kinetic theory and a clear application to
applying (32) results from the fact that we need an explicitan equilibrium flow can be found in a textbook by Patterson
expression for the joint distribution f (Ci , «) in order to(Ref. [13, pp. 163–167]). On using the notation to represent
evaluate these split fluxes; and this lack of knowledge isthe splitting in (23)
indicated by the notation employed following the second

F 5 F 2 1 F 1 (24) equality. However, in the case of the total eint , it is given by
(13) since our model assumes equilibrium for the internal

and on introducing a Cartesian coordinate system (n, t1, degrees of freedom. Likewise, for the total flux represented
t2), located in an arbitrary fixed planar surface, we obtain by DqEucken , we can use the Eucken model which replaces
from (22), (23), and (24) the definitions , Cn« . by a quantity that is proportional to the tempera-

ture gradient, thus making it proportional to the heat flux
vector (see [22, p. 66]). The net effect changes the valueF 2

n 5 n Ey

2y
Ey

2y
E2un

2y
(Cn 1 un)Q INV f dCndCt1dCt2 (25)

of the coefficient of thermal conductivity, as well as the
Prandtl number, from that for a simple gas to the proper

F 1
n 5 n Ey

2y
Ey

2y
Ey

2un

(Cn 1 un)Q INV f dCndCt1dCt2 . (26)
values for a gas with internal structure. This then allows
one to use the same basic relations found for a simple gas.
We will use the Eucken approximation and represent theThese relations provide the means for computing Fn when
incremental contribution to the heat flux due to the internalf is a known function.
degrees of freedom byBecause the total fluxes are known from the terms in

(12), explict expressions for each of the collisional invari-
DqEucken 5 Dq2

Eucken 1 Dq1
Eucken 5 2K0=T. (34)ants given by (14) need only be listed for, say, F 1

n . It is
also useful to introduce a more physically descriptive nota-
tion for the split fluxes as follows: These steps alone, however, still do not answer the ques-
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tion of how one evaluates the split fluxes appearing in (32).
tCE

ij 5 e(1) S­ui

­xj
1

­uj

­xi
D2

2
3

e(1) S­uk

­xk
D dij . (37)This will be done after we have completed the implementa-

tion of the Eucken model.
The extra quantity F 1

zero is also listed because it defines
At this point we face a logical difficulty. Must we fix thehow the velocity distribution function itself is split, which
Prandtl number to the value for a simple gas (Pr 5 e(1)is needed in the overall algebra. This can be seen from the
cp/K (1) 5 2/3) or may we allow it to vary so that (36)normalization condition Fzero 5 F 2

zero 1 F 1
zero 5 1 for a

becomes consistant with the Eucken approximation? Asprobability distribution. The expression for F 1
t22mom is not

there is no simple answer, we will defer the question tolisted because it can be gotten by merely interchanging t1
the point in the analysis where logical conflicts can be moreand t2 in (30). For a monatomic gas, the set of equations
easily identified. On substituting (35) into Eqs. (27)–(31)is very general and applies for any velocity distribution
and using the same orthogonal coordinate system (n, t1,function one cares to define, for example, even for a dis-

crete distribution. For a polyatomic gas, the set is not quite t2), we see that in each case the integrand becomes a
as general and is limited by the Eucken model and the product of polynomials in the thermal velocities Ci and
approximations to be introduced below. Our interest is the Maxwellian distribution f Max. The only difficulty that
in the Chapmann–Enskog distribution and the resulting appears in carrying out the integration is the large number
split fluxes. of terms that are produced. For example, f1 and f2 are

composed of four and nine terms, respectively, and there-
fore (35) leads to a total of 14 terms. On evaluatingIV. CHAPMAN–ENSKOG SPLIT FLUXES
F 1

tr-energy alone, we are faced with 252 terms. This at first
A gas flow that is in thermodynamic equilibrium is repre- appears to be an overwhelming task, until it is noticed that

sented locally by a Maxwellian distribution, and a gas flow many of the terms are zero, because in the Ct1 and Ct2

that is slightly disturbed from the equilibrium state is repre- variables all odd moments of the symmetric function f Max

sented locally by the Chapman–Enskog (CE) distribution. are zero and even moments are well-known functions of
The CE distribution is obtained as an approximate solution RT. Likewise, integration in the Cn component can be
of the Boltzmann equation (for a simple gas) and is ex- handled by splitting the integration into 2uy to 0 1 0 to
pressed as a product of a local Maxwellian and a polyno- y which then leads to exponential and error functions (see
mial function of the thermal velocity components Ci , that [3, p. 417]). Because the collection of functions is small,
is, by the relation there is hope that the results can be finally assembled into

fairly compact expressions. Even though the details are
daunting, Patterson (Ref. [13, p. 77]) used a method hef CE 5 f Max (1 1 f1 1 f2) (35)
reports was ‘‘initiated by Maxwell and developed by Chap-
man’’ to develop general expressions for the total fluxes,

where
for the case of nonisentropic flow, which employs concepts
and algebra very similar to that employed here. Our inter-

f Max 5 (2fRT)23/2 exp(2C2/2RT) est, however, is in obtaining the split fluxes for which many
more terms must be handled. To carry out the present
study, intensive use of symbolic mathematical manipula-f1 5 2 S r

p2D SK (1) ­T
­xk
D Ck (C2/5RT 2 1)

tions, provided by MATHEMATICA, was made in han-
dling the algebra. Only the final collected integrated results

f2 5 2 S r

p2D Se(1) ­uj

­xk
D SCj Ck 2

1
3

C2djkD , wil be presented here. A discussion of the detailed steps
required to obtain the following relations can be found
in [6]:

and where K (1) is the coefficient of thermal conductivity
and e(1) is the coefficient of viscosity as determined by the

F 6
zero 5 As[(1 6 a1) 6 a2 (Snt̂CE

nn 1 (2S2
n 2 1)q̂CE

n )] (38)first-order Chapmann–Enskog procedure, and djk is the
Kronecker delta. Because both the temperature gradient F 6

mass 5 r ÏRT/2 [(1 6 a1)Sn 6 a2 (1 2 x1)] (39)
and the velocity-gradient tensor appear as parameters in
f CE, notational efficiency can be gained in the algebra that F 6

n2mom 5 p [(1 6 a1)(S2
n 1 As(1 2 t̂CE

nn ))
follows by replacing those quantities by the Chapman–

6 a2 (Sn 1 q̂CE
n )] (40)Enskog expressions for stress and heat flux, i.e., by

F 6
t12mom 5 Ï2RT [St1 F 6

mass]

qCE
i 5 2K (1) ­T

­xi
(36)

1 Asp [2(1 6 a1)t^CE
nt1 6 a2q̂CE

t1 ] (41)
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Fn2mom 5 ru2
n 1 p 2 tCE

nn (46)F 6
tr2energy 5 p ÏRT/2 [(1 6 a1)(Sn (Gs 1 S2) 1 x2)

Ft12mom 5 runut1 2 tCE
nt1 (47)6 a2 (2 1 S2 1 x3)] (42)

Ftr2energy 5 run S3
2

RT 1
u2

2 D1 punF 6
int2energy 5 (Dq6

Eucken 1 rune6
int) 5

1
2 S5 2 3c

c 2 1 D
2 (tCE

nn un 1 tCE
nt1 un1 1 tCE

nt2 ut2) 1 qCE
n (48)

[RT F 6
mass] (43)

Fint2energy 5 (DqEucken 1 runeint) 5
1
2 S5 2 3c

c 2 1 D pun . (49)F 6
energy 5 F 6

tr2energy 1 F 6
int2energy , (44)

where
These correspond to all the expressions in (12) for the
orthogonal coordinated system used. Equation (49) pro-

a1 5 er f (Sn), a2 5
1

Ïf
e2S2

n vides both the extra term required by (17), as well as the
extra term required by (18). However, this returns us to
the logical difficulty raised in the discussion following (36)

x1 5 FSnq̂CE
n 1

1
2

t̂CE
nn G and (37). If the Eucken approximation is introduced when

first using (36), then its effect will appear twice when sum-
ming (48) and (49), i.e., in the combination (qCE

n 1x2 5 F5
2

q̂CE
n 2 (Snt̂CE

nn 1 St1t̂
CE
nt1 1 St2t̂

CE
nt2)G

DqEucken). Knowing this, one approach would be to intro-
duce the Eucken approximation here by absorbing DqEuckenx3 5 [St1q̂CE

t1 1 St2q̂CE
t2 2 x1 (1 1 S2

t1 1 S2
t2) 2 t̂CE

nn ]
into the term qCE

n by using Eq. (34). Although it appears
Sn 5 un/Ï2RT, S2 5 S2

n 1 S2
t1 1 S2

t2 to be a reasonable step, it is in fact a bold step, because
split fluxes are required in (42) and (43) and one cannot

t̂CE
nn 5 tCE

nn /p, q̂CE
n 5

2
5

qCE
n /(pÏ2RT). be sure that when the Eucken approximation is introduced

into x2 and x3 in (42) that it will properly account for the
absorption of the split quantities Dq6

Eucken in (43). Conse-
Each individual component of Si , t̂ij , and q̂i is not listed, quently, one may encounter incorrect energy split fluxes
as they are clearly nondimensionalized the same way. at an interface or a boundary. Actually, we have no alterna-

Equations (38)–(42) are not outwardly affected by the tive, as we do not have f (Ci , «) with which to compute
physics associated with additional internal degrees of free- these split quantities. In the following development, we
dom, i.e., c ? Gd. In view of this, these equations should not will use the Eucken approximation throughout and assume
contain c explicitly, when expressed appropriately. This is that proper accounting is made for Dq6

Eucken by x2 and x3 .
easily done by introducing the speed ratio S 5 u/Ï2RT, An additional assumption is actually needed to complete
which is frequently used in kinetic theory, as opposed to the specification of (43), and this involves the evaluation
the Mach number, which requires the introduction of c of e6

int , which again requires knowledge of f (Ci , «). Assum-
through the isentropic speed of sound. Use of the speed ing the Eucken model properly accounts for the correlation
ratio S not only provides a useful physical check on the DqEucken 5 n , Cn« . then it may be permissible to employ
mathematical results, it also allows the final expressions the equilibrium assumption to approximate e6

int . The as-
to be written in a more compact form. On the other hand, sumption that the internal energy modes are in equilib-
the physical concepts that lead to (43) directly involve rium, both internally and with the translational degrees of
additional internal degrees of freedom and the relation freedom, leads to the conclusion that Ci and « are statisti-
should contain c explicitly, which is seen in the expression cally independent random variables, and therefore, f (Ci ,that follows the second equality, a step to be explained in «) reduces to a product function. On this basis e6

int can be
the following discussion. evaluated, and this step leads to the expression following

It is appropriate to review several consistency checks on the second equality in (43). However, we should note that
Eqs. (38)–(43). First, the total fluxes (24) should agree if the same assumption were used to evaluate , Cn« . as
with the corresponding expressions in (12). Starting with well, then we would have DqEucken 5 n , Cn« . 5
(38), we have Fzero 5 1, which is the correct normalization n , Cn . , « . 5 0 because , Cn . 5 0 by definition; and
condition for a proability distribution. From (39)–(43), this would lead to the loss of the Eucken approximation. In
we have summary, on combining (42) and (43), our approach con-

sists of absorbing Dq6
Eucken into x2 and x3 by the introduction

Fmass 5 run (45) of the Eucken approximation and using the equilibrium
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assumption to evaluate e6
int ; this leads to the second expres-

sion in (43) as well as the second expression in (49).
A second check leads to the requirement that one should

recover the known values for the Maxwellian distribution
when setting the nonequilibrium parameters t̂CE and q̂CE

to zero:

F 6
zero 5 As(1 6 a1) (50)

F 6
mass 5 r ÏRT/2 [(1 6 a1)Sn 6 a2] (51)

F 6
n2mom 5 p [(1 6 a1)(S2

n 1 As) 6 a2Sn] (52)

F 6
t12mom 5 Ï2RT [St1 F 6

mass] (53)

F 6
tr2energy 5 p ÏRT/2 [(1 6 a1)Sn(Gs 1 S2)

6 a2(2 1 S2)] (54)

F 6
int2energy 5

1
2 S5 2 3c

c 2 1 D [RT F 6
mass]. (55)

These expressions are in full agreement with results ob-
tained by Patterson (Ref. [13, Section 5.3, Eqs. (4), (11),
(17), (19)]), where his objective was to compute the mo-
mentum and energy exchange at a surface for an equilib-

FIG. 3. Momentum and energy split fluxes for the case of a one-rium gas. These relations were later introduced in work
dimensional flow and c 5 1.4. The momentum flux is nondimensionalizedby Pullin [15] (for one-dimensional flow) and more recently
by p and the energy flux by p(2RT)1/2. Comparisons are for the present

by Mandal and Deshpande [12] and by Mallett et al. [11]. work, where the assumption t̂ CE
nn 5 q̂CE

n 5 20.3 was made in Eqs. (40)
Finally, on setting the fluid velocities to zero (S 5 0, and (44), ———; Mandal–Deshpande KFVS for the Euler equations,

? ? ?; and Steger-Warming, – – –.a1 5 0, a2 5 1/Ïf), one must recover the well-known
kinetic theory values for a stationary equilibrium distribu-
tion (Maxwellian):

graphical display representative values are quite useful,
and a representative peak value for both parameters in aF 6

zero 5 1/2 (56)
moderately strong normal shock wave is roughly 20.3.

F 6
mass 5 6 r ÏRT/2f (57) This value, along with c 5 1.4 and the assumption of a

one-dimensional flow, was used to develop Fig. 3, whichF 6
n2mom 5 p/2 (58)

presents the momentum and energy split fluxes versus the
local Mach number for three cases: KFVS for the NS equa-F 6

t12mom 5 0 (59)
tions given by (40) and (44); KFVS for the Euler equations

F 6
tr2energy 5 6 p Ï2RT/f (60) given by (52) and the sum of (54) and (55); and Steger–

Warming splitting. On the scale shown, the results for
the equilibrium values and Steger–Warming group fairlyF 6

int2energy 5 6
1
2 S5 2 3c

c 2 1 D p ÏRT/2f. (61)
closely together (a comparison apparently first made by
Mandal and Deshpande [12]), while the present work
shows considerable difference, especially in the asymmetri-The first five relations clearly agree with known values in

kinetic theory, while the final relation is based on several cal shift seen in F 1 and F 2. The figure clearly points to
the fact that in a hybrid solution, where the one-sided fluxescritical assumptions as discussed above.

The importance of the nonequilibrium parameters t̂CE
ik are to be matched at an interface having nonequilibrium

conditions, the present kinetic split fluxes must be used.and q̂CE
k in Eqs. (39)–(44) can be judged by comparison

with equivalent Euler split fluxes. Of interest in a compari- This is because one does not otherwise know how to adjust
the Euler split fluxes to account for viscous and heat con-son are the Steger–Warming split fluxes [17] and the equi-

librium values given by (51)–(55). Obviously, the nonequi- duction effects, even though the total fluxes are known
from (12).librium parameters are not constants in a flow, but in a
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V. BOUNDARY CONDITIONS and (61), together with (44) and the state of the gas from
the update procedure; i.e.,

When a nonreacting particle in the DSMC method pas-
ses through a body surface during a time step, the proce-

(Fenergy)surface 5(F 1
energy)g 2pwÏ2RTw/f F11

1
4 S523c

c21 DG ,dure is to emit the same particle from the surface with a
new velocity depending on the boundary conditions. Thus,

(66)the DSMC method effectively treats a solid boundary as
though it too consists of a gas, but at different conditions.

which completes the specification of the conditions at aThis concept was clearly described by Patterson (Ref. [13,
surface for an isothermal wall. The most important out-p. 165]) and was used in his analysis of molecular interac-
come from this analysis is that the temperature of the gastions with boundaries. Because the same particle is emitted,
near the surface may not be equal to the specified wallthe wall gas is identically the same gas and, therefore, the
temperature Tw , which gives rise to the possibility of tem-two share the same molecular mass and gas constant. Also,
perature slip. Likewise, the tangential velocity near thebecause every particle passing through a body surface is
surface may not be zero, leading to velocity slip; however,treated this way, the number of particles per unit time per
the normal velocity near the surface must be zero becauseunit area passing into a wall is exactly balanced by the rate
the expressions in (62) also define the fluid velocities forof emission. However, this condition does not tell us what
the two separate gases.the number density of the wall gas is; i.e., it does not fix

For an adiabatic boundary condition, we know that thenw , or rw , for the wall gas, nor does it fix the temperature
total energy flux to the surface is zero, while the wall gasof the wall gas Tw . What we do know is that the total mass
temperature and density are unknown. Thus, we haveflux must be zero at a material surface, i.e.,

(Fenergy)surface 5 (F 1
energy)g 1 (F 2

energy)w 5 0. (67)
(Fmass)surface 5 (F 1

mass)g 1 (F 2
mass)w 5 0, (62)

On using (60) and (61) for the wall gas, we have
where gas and wall positions, consistent with the end-wall
geometry shown in Fig. 2, are assumed. Generally speak-
ing, in the DSMC method one often assumes that the wall (F 1

energy)g 5 pwÏ2RTw/f F1 1
1
4 S5 2 3c

c 2 1 DG , (68)
gas is in equilibrium and the wall is stationary. On this
basis, Eq. (57) can be used in (62) to describe the wall gas,

which along with (63) provides two equations in the twoand we can write
unknowns rw and Tw , since (F 1

mass)g and (F 1
energy)g are both

known from the update procedure at each time step. Like-(F 1
mass)g 5 rwÏRTw/2f. (63)

wise, the normal stress on the surface can be obtained
using (58) and the tangential stress using (59), completing

A particularly simple boundary condition is the case the analysis.
where the wall temperature Tw is specified, namely, an The application of flux boundary conditions to the wide
isothermal boundary condition; for this case Eq. (63) fixes variety of possible boundary conditions is quite straightfor-
the density of the wall gas rw , since (F 1

mass)g would be ward and only two are given here. For example, accommo-
known from (39) and the state of the gas from the update dation coefficients for momentum and energy are often
procedure for the numerical solution of the NS equations. used in the application of the DSMC method, and it would
Given rw , Tw and pw 5 rwRTw , we then have, on using be a simple matter to include them as well. In addition,
(58), the relation analytical results for both temperature slip and velocity

slip can be obtained from Eqs. (62)–(68) and these can be
shown to reproduce the special case considered by Pat-(Fn2mom)surface 5 (F 1

n2mom)g 1 pw/2, (64)
terson (Ref. [13, Section 4.4, Eqs. (30)–(33)]). A detailed
discussion of this topic will be covered in a follow-onwhich fixes the normal stress at the surface, since
report.(F 1

n2mom)g likewise represents a known quantity from (40)
and the update procedure. Likewise, on using (59), we have

VI. NUMERICAL COMPARISONS

(Ft12mom)surface 5 (F 1
t12mom)g , (65) Our main objective is to show that the derived expres-

sions for the split kinetic fluxes given by Eqs. (39)–(44),
together with the flux boundary conditions, lead to validwhich determines the tangential stress on the surface. Fi-

nally, the energy flux to the surfaces is found by using (60) solutions of the NS equations. For this purpose, compari-
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FIG. 4. Definition of symbols used in applying the MUSCL scheme
to the KFVS relations for the NS equations.

sons are made with first-order schemes by Steger and
Warming [17] and Roe [16], while second-order compari-
sons are made with the symmetric limited positive second-
order (SLIP2) scheme reported by Tatsumi, Martinelli,

FIG. 6. Normal stress (upper set, tnn/2p) and heat flux (lower set,and Jameson [18]. Central differencing was used in each
qn/pc) in a shock wave versus the fluid velocity, with the upstream state

of these cases to handle the terms introduced by viscous designated by 1, M1 5 1.5, and c 5 1.4. The curves were separated by
stress and heat flux. A version of the monotone upstream- using a factor of 2 in plotting the dimensionless stress. Second-order

schemes for KFVS, – ? – ?, and Jameson’s SLIP2, – – –, are compared withcentered scheme for conservation laws (MUSCL) (van
the reference solution, ———.Leer [19]), was used in applying the KFVS relations for

the NS equations. The parameters chosen in using MUSCL
are defined in the relations

F MUSCL
i11/2 5 F 1

i11/2 1 F 2
i11/2 , (69)

where

F 1
i11/2 5 F 1(UL

i11/2)

F 2
i11/2 5 F 2(UR

i11/2)

UL
i11/2 5 Ui 1

u1

2
minmod[DUi21/2 , b DUi11/2]

UR
i11/2 5 Ui11 2

u1

2
minmod[DUi13/2 , b DUi11/2]

DUi11/2 5 Ui11 2 Ui

minmod(a, b) ;5
a if uau # ubu; ab . 0

b if uau . ubu; ab . 0

0 if ab , 0

and where the L/R arrangement is defined in Fig. 4. A
first-order scheme is obtained for u1 5 0 and a second-

FIG. 5. Normal stress (upper set, tnn/2p) and heat flux (lower set, order scheme for u1 5 1. Most of the work was carried
qn/pc) in a shock wave versus the fluid velocity, with the upstream state out for b 5 1.5. The function F 1(UL), for example, repre-
designated by 1, M1 5 1.5, and c 5 1.4. The curves were separated by

sents any one of Eqs. (39), (40), (41), or (44). These equa-using a factor of 2 in plotting the dimensionless stress. First-order schemes
tions contain spatial derivatives of U as well, and the con-for KFVS, – ? – ?, Steger–Warming, – – –, and Roe, ? ? ?, are compared with

the reference solution, ———. cept of the function must be generalized to include them.
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FIG. 9. Temperature ahead of an impulsively started piston in a
stationary monatomic gas, where piston Mach number 5 1.0 and where
use of the flux boundary condition for an isothermal piston leads to aFIG. 7. Shock-tube flow for a pressure ratio of 3, c 5 1.4, and where
temperature slip at the piston surface (located at x/L 5 1). Also shown,the flow is from left to right. Comparisons are for second-order KFVS,
by the circle symbol, is Patterson’s theory [13] for temperature slip in a———; Jameson’s SLIP2, – – –; and first-order Roe, ? ? ?. The variables
slightly rarefied monatomic gas.shown are the density r/r1 and the temperature T/T1, where state 1

refers to upstream conditions.

For a problem with one spatial dimension, the update
formula (first-order in time) is then given by

Un11
i 5 Un

i 2
Dt
Dx

(F MUSCL
i11/2 2 F MUSCL

i21/2 )n, (70)

where n represents the time step.

FIG. 8. Shock-tube flow for a pressure ratio of 20, c 5 1.4, and where
the flow is from left to right. Comparisons are for second-order KFVS,
———; Jameson’s SLIP2, – – –; and first-order Roe, ? ? ?. The variables FIG. 10. Velocity field in a square isothermal cavity with a slider

plate on top, moving from right to left at a Mach number of 1.0. Theshown are the density r/r1 and the temperature T/T1, where state 1
refers to upstream conditions. gas is assumed to be air and Kn (based on the cavity width) 5 0.005.
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FIG. 11. Temperature distribution in a square isothermal cavity with a slider plate (near face) moving from left to right in view shown; conditions
same as in Fig. 10.

The problem of determining the profile for a normal clear that it is not possible to distinguish between them.
Higher Mach numbers were also studied and the sameshock wave represents a steady flow for which viscous

stress and heat conduction are very important; and this general observations were made.
In the same spirit of reviewing extreme conditions, it isrepresents an extreme limit that provides appropriate con-

ditions for testing. Although it is well known that the NS appropriate to consider a flow that corresponds to the
Euler limit, namely, a shock-tube flow. Because of theequations do not give physically realistic profile predictions

for strong shock waves, we are only interested in establish- presence of the contact surface, it is most useful to display
the density and temperature variables as they frequentlying that valid NS solutions are being obtained. For this

purpose, we have the method suggested by von Mises [21] exhibit large changes there. Figures 7 and 8 present results
for pressure ratios (driver to driven gas) of 3 and 20, respec-and by Gilbarg and Paolucci [7] for solving the NS equa-

tions for steady one-dimensional flow, which can be used tively, and where the flow is from left to right. Starting
from the left, the transitions seen are the expansion fan,as a standard of comparison. To obtain a reliable reference,

a four-step Runge–Kutta method and 1200 points in the the contact surface, and the shock wave. We see that there
is good agreement between second-order KFVS anddomain of integration were used. The primary integration

takes place in a computational space where the fluid veloc- SLIP2, with the largest difference at the contact surface,
possibly a result of the different limiters used. Roe’s first-ity is the independent variable and, because the normal

stress and the heat flux variables seem to show the greatest order scheme clearly shows severe rounding of the profiles.
The separation distance between the shock wave and thenumerical sensitivity, these were selected for display. Fig-

ures 5 and 6 give results for a shock-wave Mach number contact surface grows linearly with time and therefore the
relative rounding of the corners would appear to diminishof 1.5 and air as a representative gas. First-order schemes

for KFVS, Steger–Warming, and Roe are compared with with increasing time. An early time was specifically chosen
for display to emphasize the relative difference betweenthe reference solution (solid curve) in Fig. 5; it is clear that

Roe’s scheme compares the best, with Steger–Warming the diffrent schemes.
In both the ideal shock-tube and shock-wave problemsexhibiting the familiar transition near the sonic station

and KFVS showing only moderate success. Second-order solid boundaries are absent. However, the case of an impul-
sively started piston is an example where nonequilibriumschemes consisting of KFVS and Jameson’s SLIP2, along

with the reference solution, are compared in Fig. 6; it is effects near a solid boundary can lead to temperature slip.
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FIG. 12. Velocity component parallel to the slider plate (near face) which is moving from left to right in view shown; conditions same as in Fig.
10 with velocity scaled to the sound speed at the wall temperature.

Figure 9 shows an expanded view of the thermal layer near four material surfaces are held fixed and equal. This is a
well-known problem for which the NS solution, based onan isothermal piston, where the piston Mach number is

taken to be unity and the gas is ideal and monatomic, and the no-slip boundary conditions, leads to singular behavior
of the shearing stress, in the two corners defined by theit is clear that the gas temperature near the piston is higher

than the piston temperature, as a result of the flux type slider plate and the box walls [1]. Because of the shearing
motion of the plate, work is done on the fluid, it induces(DSMC) boundary conditions used in solving the problem.

A theoretical expression for temperature slip in a slightly a circulation inside the box, and the fluid is heated as
a result of viscous dissipation. However, because of therarefied flow of a monatomic gas was developed by Pat-

terson [13, see Eq. (33), p. 125] and his prediction is shown isothermal walls, heat is conducted out of the gas, and a
steady state is reached after a long time has passed. Theby the circle symbol. The excellent agreement seen un-

doubtedly results from the fact that Patterson’s theory velocity field shown in Fig. 10 provides an intuitive physical
understanding of the flow generated by the sliding plate,makes use of the assumptions in NS, and therefore, bound-

ary conditions (62)–(68) used in the numerical solution which is on top and moves from right to left in the view
shown. The computational domain was covered by 64 3and the analytical approach used by Patterson correspond

closely. A necessary next step, of course, is to carry out 64 square cells, the plate Mach number was set to 1.0, the
Knudsen number (based on the cavity dimension) was setcomparisons with DSMC simulations to determine the con-

ditions under which the magnitude of the jump is physically at 0.005, and the gas was assumed to be air at ambient
conditions. One of the more interesting results from thecorrect. This study, which requires careful discussion, will

be presented in a follow-on report. The most important solution is the temperature distribution in the box, which
is shown in Fig. 11. The dimensionless wall temperatureobservation is that the method introduces slip into the NS

formulation in a very natural way through the use of flux is unity in the figure. If no-slip were present, then the
dimensionless gas temperature would also be unity every-boundary conditions.

A final problem to be reviewed is the steady, two-dimen- where along the surface, but it can be seen that a significant
jump occurs around a great portion of the cavity walls.sional flow produced by a plate sliding across the open end

of a square cavity and for which the temperatures of all The same situation develops for the two components of
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velocity. Figure 12 displays the velocity component parallel the DSMC portion is normally expected to take the greater
computation time in most problems, one does not need toto the slider plate (near face) which is moving left to right

in the view shown. If no-slip were present, then the dimen- pick a numerical scheme for the NS portion that minimizes
time, and therefore, computation time is not an issue. Thissionless gas velocity would be unity (negative) over the

length of the plate and zero everywhere else on the box allows one to choose a numerical scheme that offers the
greatest compatibility with DSMC, which we believe to beboundary. As can be seen, a significant jump in velocity

occurs over the entire plate and, as a result, it appears to the KFVS scheme for the NS equations. On the other
hand, in obtaining the data for Figs. 7 and 8, it was foundsuppress the singular behavior of the stress in the two

corners. Although the edge-values displayed are actually that KFVS and Jameson’s SLIP2 required virtually the
same computation time. Whether this continues to holdthe values at the midpoints of the cells bordering the walls

and one must find the true wall values from extrapolation, for higher spatial dimensions is unknown.
the correction is modest and our observations remain un-
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